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µ+µ−, π+π−, and K−π+ decay modes. We use the Cabibbo-favored D0 → K−π+ channel to
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The flavor-changing neutral current (FCNC) decay
D0 → µ+µ− [1] is highly suppressed in the standard
model (SM) by Glashow-Iliopoulos-Maiani [2] cancella-
tion. Burdman, Golowich, Hewett, and Pakvasa [3] es-
timate the branching fraction to be about 10−18 from
short-distance processes, increasing to about 4 × 10−13

with long-distance processes. These rates are many or-
ders of magnitude beyond the reach of the present gen-
eration of experiments; the best published upper bound
is 1.4× 10−7 at the 90% confidence level from Belle [4].

However, new physics contributions can significantly
enhance the branching ratio. The authors of Ref. [3] con-
sider the effects on D0 → µ+µ− that arise from a number
of extensions to the SM: R-parity violating SUSY, mul-
tiple Higgs doublets, extra fermions, extra dimensions,
and extended technicolor. Some of these scenarios could

Virginia, Charlottesville, VA 22906, aaYarmouk University, Irbid
211-63, Jordan, iiOn leave from J. Stefan Institute, Ljubljana,
Slovenia,
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increase the branching fraction to the range of 10−8 to
10−10, and in particular R-parity violating SUSY could
raise it to the level of the existing experimental bound.
Similar enhancements can occur in K and B decays, but
charm decays are sensitive to new physics couplings in
the up-quark sector. Golowich, Hewett, Pakvasa, and
Petrov [5] have shown that in some new physics scenar-
ios there is a correlation between the new physics con-
tribution to D0-D̄0 mixing and the branching fraction
of D0 → µ+µ−. If new physics dominates both pro-
cesses, then the measured mixing can be used to con-
strain B(D0 → µ+µ−), or a measurement of both can
shed light on the phenomenology of the new physics.

In this paper we report on a search for D0 → µ+µ−

using data corresponding to 360 pb−1 of integrated lumi-
nosity collected by the Collider Detector at Fermilab II
(CDF II). The 65 pb−1 of integrated luminosity compris-
ing our previous search [6] is included. We significantly
improve the sensitivity of the new search by analyzing
a much larger data sample, extending the muon accep-
tance beyond the central region, identifying muons with
a likelihood technique, and discriminating signal from b–
hadron related background with the help of a probability
ratio.

The CDF II detector [7] components pertinent to
this analysis are tracking systems and muon detectors.
The inner tracking system is composed of a silicon mi-
crostrip detector [8] surrounded by an open-cell wire drift
chamber (COT) [9]. These are located within a 1.4 T
solenoidal magnetic field and measure charged particle
momenta, ~p. Four layers of planar drift chambers [10]
detect muons with pT > 1.4 GeV/c and provide coverage
in the central pseudorapidity range |η| < 0.6, where pT is
the magnitude of the momentum transverse to the beam-
line, η = − ln(tan θ/2), and θ is the angle of the track
with respect to the proton beamline. Conical sections
of drift tubes cover the forward pseudorapidity region
0.6 < |η| < 1.0 for muons with pT > 2.0 GeV/c.

We determine the D0 → µ+µ− branching fraction us-
ing the kinematically similar D0 → π+π− decay as a
reference signal,

B(D0 → µ+µ−) =
Nµµ
Nππ

Aππ
Aµµ

B(D0 → π+π−)
εµµ

, (1)

where B(D0 → π+π−) = (1.397 ± 0.027) × 10−3 is the
world average branching fraction [11], Nµµ and Nππ are
the numbers of D0 → µ+µ− and D0 → π+π− events
observed, Aµµ and Aππ are the combined acceptances
and efficiencies for reconstructing dimuon and dipion D0

decays, and εµµ is the efficiency of dimuon identification.
Except for the requirement of muon identification and the
assignment of final state particle mass, the event selection
criteria are the same for both the µ+µ− and π+π− modes.
In the spirit of obtaining an unbiased result, we hid the
data in the signal mass window (“blinding”) and fixed the
selection criteria before revealing the data in the signal
region (“unblinding”). The ratio of acceptances times
efficiencies Aππ/Aµµ is estimated from simulated data

samples, while the efficiency for dimuon identification,
εµµ, is determined from J/ψ → µ+µ− data. The back-
grounds are estimated using D0 → K−π+ data, blinded
D0 → µ+µ− data, and simulated samples.

The D0 data come from a sample enriched in heavy
flavor using a silicon vertex trigger that selects events
having displaced vertices using custom hardware pro-
cessors [12, 13]. The trigger selects events containing
two oppositely charged particles reconstructed as heli-
cal tracks formed from signals in the COT and silicon
detectors, each with pT > 2 GeV/c, and transverse mo-
mentum sum p+

T + p−T > 5.5 GeV/c, where ± refer to
the oppositely charged pair. Information from the sil-
icon detectors is used to precisely determine the track
positions near the beamline. Decays of particles with
picosecond lifetimes are preferentially selected by requir-
ing each track of the pair (the trigger tracks) to have
an impact parameter between 120µm and 1.0 mm with
respect to the beamline, and the pair to be consistent
with originating from the decay of a particle traveling a
transverse distance Lxy > 200µm from the beamline [14].
Finally, the tracks must be separated azimuthally by an
angle 2◦ < |∆φ| < 90◦, a range that is highly efficient for
heavy-flavor decays while suppressing non-heavy-flavor
backgrounds. The requirements are made first at trigger
level, and then verified in a complete event reconstruc-
tion.

From the trigger sample, three non-overlapping sub-
samples of dimuon candidates are selected because the
muon efficiencies in the central and forward regions are
significantly different, and independent treatment im-
proves the sensitivity. The three subsamples are central-
central (CC) where both tracks lie in the range |η| < 0.6,
central-forward (CF) where one track lies in the range
|η| < 0.6 and the other in the range 0.6 < |η| < 1.0, and
forward-forward (FF) where both tracks fall in the range
0.6 < |η| < 1.0.

All of the D0 candidates used in the analysis come
from D∗+ → D0π+ candidates. A large fraction of re-
constructed D0 mesons come from D∗ decays and the
narrow resonance width limits the phase space for ran-
dom combinatorics. The D0 candidates consist of pairs of
oppositely charged particles, matched to trigger tracks,
with invariant mass 1.845 < Mµµ < 1.890 GeV/c2, where
the tracks are assigned the muon mass. The one degree
of freedom fit for the vertex of the track pair must have
χ2 < 20. We select D∗+ → D0π+ decays by combining a
third track, assigned the π+ mass, with the D0 candidate
and requiring the mass difference Mµµ+π−Mµµ to fall in
the range of the resonance, 144 MeV/c2 to 147 MeV/c2,
where µµ+ π refers to the combination of the track pair
with the third track. To be considered for this analysis,
the third track must have pT ≥ 0.4 GeV/c. About 88%
of the selected D∗ decays are produced directly in the
pp̄ interaction (prompt) with the remainder coming from
b–hadron decay (secondary) [15].

Figure 1 shows the resulting invariant mass spectrum
for D0 candidates in the CC subsample. The distribu-
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tions for the CF and FF subsamples are similar, just
scaled by the relative acceptance. The search window,
spanning the range around the D0 mass from 1.845
to 1.890 GeV/c2, is heavily populated with mass-shifted
D0 → π+π− decays and combinatorial background. The
more numerous D0 → K−π+ decays are mass shifted
below 1.800 GeV/c2, well separated from the search re-
gion. To be considered as a D0 → µ+µ− candidate,
both D0 daughter tracks must satisfy a muon likelihood
requirement [16] based on energy loss information from
the tracker, the electromagnetic and hadronic calorime-
ter energy deposition, and track based isolation, in ad-
dition to the muon detector information. The additional
information reduces the probability to misidentify pions
and kaons as muons by about a factor of 2.5 over that
obtained with muon detector information alone, while de-
creasing the muon identification efficiency by about 20%.

We estimate the muon identification efficiency per
track as a function of transverse momentum using a sam-
ple of J/ψ → µ+µ− decays collected by a trigger requir-
ing an identified muon candidate together with a second
track displaced from the pp̄ beamline. The second track
has the same characteristics as a trigger track used to
form D0 decays, in particular, no muon identification re-
quirement, giving an unbiased sample for determining the
muon identification efficiency. The muon likelihood re-
quirement is found to be approximately 70% efficient for
central muons and 40% efficient for forward muons. The
misidentification probabilities for pions and kaons are de-
termined as a function of track pT using the large sample
of Cabibbo favored D0 → K−π+ decays selected in the
same manner as the signal sample, but using kaon and
pion masses, and requiring the charge of the third track
to be opposite to the charge of the kaon. This selects the
Cabibbo favored decays and yields a nearly pure sample
of kaons and pions satisfying the same requirements as
the decay tracks in the signal sample. The probability to
satisfy the muon likelihood requirement varies smoothly
with pT and is about 0.5% (0.2%) for π±, 1.3% (0.3%) for
K+, and 0.7% (0.3%) for K− tracks within the central
(forward) acceptance.

After requiring muon identification for both tracks, the
surviving background events fall into four categories: b–
hadron decays with two real muons (cascade dimuons);
b–decays with one real muon (semi-muonic B decays);
D0 → π+π− decays where both pions are misidenti-
fied as muons; and combinatorial background where ran-
dom combinations of hadrons are misidentified as muons.
The surviving D0 → π+π− events are associated pre-
dominantly with real D∗ decays, while the other back-
grounds are associated with a mix of real D∗ decays
and random track combinations. We find the back-
ground contributions from semi-muonic c–hadron decays
and D0 → K−π+ decays to be negligible.

The dominant background is cascade dimuons from in-
clusive B → DµνY → µ+µ−ννX decays where B repre-
sents a b–hadron, D represents a c–hadron, and X and
Y represent other possible decay products. We estimate
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FIG. 1: The dimuon invariant mass distribution of events in
the CC D0 → µ+µ− subsample before applying muon identifi-
cation. The dotted lines indicate the search window, spanning
the mass range 1.845 GeV/c2 to 1.890 GeV/c2 and highly pop-
ulated with D0 → π+π− decays. The binned data is fitted to
a Gaussian for the mass-shifted D0 → π+π− peak plus linear
background over the mass range 1.800 to 1.950 GeV/c2.

the number of cascade dimuons and semi-muonic B de-
cays with a misidentified hadron (B → πµνX,KµνX,
and pµνX) using MC simulation and applying the mea-
sured, pT dependent, muon misidentification probabili-
ties to the hadrons. The MC uses evtgen [17] to decay
b– and c–hadrons, with branching fractions taken from
[11], and a geant [18] detector simulation. The MC
sample is scaled to match the J/ψ → µ+µ− peak from
B → J/ψX → µ+µ−X decays that pass the displaced
vertex trigger simulation to the corresponding peak in
the data.

Prompt D0 → µ+µ− signal is separable from the dom-
inant cascade dimuon background by the tendency for
cascade dimuon events to point away from the pp̄ colli-
sion point, and the longer lifetime of b–hadrons relative
to D0 mesons. To reduce this background contribution
we construct a probability ratio based on two quantities:
the impact parameter, d0, of the D0 candidate to the
reconstructed pp̄ collision point; and the significance of
the transverse displacement, sL, of the D0 candidate de-
cay from the pp̄ collision point, defined as the transverse
displacement divided by its uncertainty, Lxy/σLxy

. The
probability ratio takes the form

p(d0, sL) =
pS(d0)pS(sL)

pS(d0)pS(sL) + pB(d0)pB(sL)
, (2)

where pS(x) [pB(x)] are the probability density functions
for the variable, x, for D0 → µ+µ− [B → µ+µ−ννX] de-
cays. The probability density functions are computed
from MC simulation. This formulation assumes that the
input variables are uncorrelated. A correlation between
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FIG. 2: The probability ratio distribution of cascade dimuon
MC and D0 → K−π+ data. The D0 → K−π+ data have the
same mixture of prompt production and b–decay production
as the reference and signal modes, but are statistically inde-
pendent. The arrow indicates the minimum value for signal
selection.

the variables has the effect of inducing a sub-optimal
analysis performance, but does not introduce any bias
to the result. The probability ratio distribution is shown
in Fig. 2 for B → µ+µ−νν̄X MC and D0 → K−π+ data.
The D0 → K−π+ data consists of the same admixture
of prompt and secondary production as the D0 → µ+µ−

signal and D0 → π+π− reference modes. The expected
sensitivity of the analysis was determined (following the
procedure described below, with the D0 → K−π+ effi-
ciency in place of the blinded D0 → µ+µ− efficiency)
for a range of probability ratio requirements, and the
best sensitivity is achieved for a minimum requirement
of 0.35. This requirement keeps 87% of the signal while
removing 75% of the cascade dimuon and semi-muonic B
decays, and combinatorial background. The results are
summarized in the first three rows of Table I, where the
uncertainties come from statistics.

The D0 → π+π− misidentification background is es-
timated by applying the pT dependent muon misidenti-
fication probabilities to the pion tracks in D0 → π+π−

events. Combinatorial background is estimated by apply-
ing the pT dependent muon misidentification probabili-
ties to D0 candidates with masses above the search win-
dow, 1.890 ≤ Mµµ ≤ 4.000 GeV/c2, where both tracks
fail the muon likelihood requirement, and extrapolating
to the search window with a fitted quadratic function.
We assume the tracks are 85% pions and 15% kaons,
based on the assumption that b–decays are the primary
source of trigger tracks, and include a systematic uncer-
tainty coming from the variation when the mixture is
varied by 10%. The results are listed in the third and
fourth rows of Table I, where the uncertainties are the

TABLE I: Background estimates, numbers of reference mode
events, acceptances, efficiency factors, and numbers of ob-
served events for the CC, CF, and FF dimuon classes. The
uncertainties are statistical and systematic uncertainties com-
bined in quadrature.

CC CF FF

Cascade dimuons 3.8± 1.3 2.5± 1.0 1.0± 0.5

Semi-µ B decays 0.54± 0.06 0.13± 0.03 0.07± 0.02

Combin. bkg. 0.04± 0.01 0.01± 0.01 < 0.01

D0 → π+π− misID 0.53± 0.01 0.06± 0.01 0.01± 0.01

Total bkg. 4.9± 1.3 2.7± 1.0 1.0± 0.5

Nππ 24400± 200 9620± 130 6940± 110

Aππ/Aµµ 0.872± 0.005 0.872± 0.005 0.872± 0.005

εµµ 0.437± 0.003 0.257± 0.004 0.161± 0.003

Observed events 3 0 1

combined statistical and systematic uncertainties. We
check the non-peaking background estimates by compar-
ing the background prediction and data in the dimuon in-
variant mass range above the search window, from 1.890
to 4.000 GeV/c2. As shown in Fig. 3, good agreement
is seen between data and the background model in the
three subsamples. An alternative method to estimate the
non-peaking background contribution exploits the mass
distribution being roughly flat in the mass range from
2.000 to 2.900 GeV/c2. We fit this range in data with a
constant value, indicated by “flat rate” in Fig. 3, and ex-
trapolate to the search window. The two methods agree
within the uncertainties listed in Table I.

We determine Nππ by performing a χ2 fit with Gaus-
sian signal plus linear background to the π+π− mass dis-
tribution and integrating the Gaussian over the search
window. The ratio of acceptances times efficiencies
Aππ/Aµµ is estimated using MC simulation, where the
dominant systematic uncertainty comes from reweight-
ing the MC to reproduce the pT and η distributions of
D0 decays reconstructed in data. The dominant source
of inefficiency for dipion decays relative to dimuon decays
comes from hadronic interactions in the detector, about
an 11% relative inefficiency. Pion decay in flight accounts
for the remaining 2% of the relative inefficiency. To de-
termine the effective dimuon identification efficiency, εµµ,
we convolute the pT -dependent muon identification effi-
ciency with the pT spectrum of pions from D0 → π+π−.
The results are listed in the lower half of Table I.

We use a hybrid frequentist/Bayesian method to deter-
mine the branching ratio B(D0 → µ+µ−) and perform a
multi-channel calculation that allows for the combination
of the three dimuon subsamples. The calculation uses
likelihood ratio ordering [19], and includes uncertainties
on input quantities (nuisance parameters) according to
Cousins-Highland [20]. For the input quantities shown in
Table I, the sensitivity for B(D0 → µ+µ−) is estimated
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FIG. 3: The invariant mass distribution of D0 → µ+µ− can-
didate events with the final selection criteria.

to be 5.2 × 10−7 (6.0 × 10−7) at the 90% (95%) confi-
dence level. After unblinding, we observe 3 CC, 0 CF,
and 1 FF dimuon events in the search window, consis-
tent with background expectation, and calculate a limit
of B(D0 → µ+µ−) ≤ 2.1× 10−7 (3.0× 10−7) at the 90%
(95%) confidence level. For no signal, the probability for
the estimated background to yield the observed number
of events or fewer is determined to be 16%. We checked
the result with a Bayesian algorithm used in previous
CDF analyses [21]. Like the frequentist calculation, the
Bayesian calculation is multi-channel and includes nui-
sance parameters. The estimated sensitivity with the
Bayesian algorithm is 6.5× 10−7 (7.8× 10−7) at the 90%
(95%) credibility level. The check yields less stringent
limits of B(D0 → µ+µ−) ≤ 4.3 × 10−7 at the 90% cred-
ibility level and B(D0 → µ+µ−) ≤ 5.3 × 10−7 at the
95% credibility level, as expected since Bayesian limits
are not significantly affected by downward fluctuations
relative to expected background [22] such as those that
occurred in the present case.

In conclusion, we present a search for FCNC D0 →
µ+µ− decays using data corresponding to 360 pb−1 of
integrated luminosity. We observe 4 candidate events in
the search mass window while we expect 9±2 background
events across the 3 event classes. We set an upper bound
on the branching ratio B(D0 → µ+µ−) ≤ 2.1 × 10−7

at the 90% confidence level and B(D0 → µ+µ−) ≤
3.0 × 10−7 at the 95% confidence level. This result su-
persedes and improves on by a factor of ten the previous
CDF result [6]. Although our limit is less stringent than
the best published result [4], we expect to improve it sig-
nificantly with the analysis of the full CDF data.
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